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Abstract

This work has been undertaken principally with an idea to improving the dynamic performance of rotor–
shaft systems, which often suffer from two major problems (a) resonance and (b) loss of stability, resulting
in excessive vibration of such systems. Polymeric material in the form of sectors has been considered in this
work as bearing supports. Polymeric material has been considered in this work as both stiffness and loss
factor of such materials varies with the frequency of excitation. Stiffness and loss factor have been found
out for the proposed support system comprising of polymeric sectors. Depending upon the frequency of
excitation the system matrix, in this case, changes and dynamic performance of the rotor–shaft system also
changes accordingly. Here in this work avoidance of resonance and application of optimum damping in the
support have been investigated by finding out the optimum dimension, i.e., the optimum thickness and
optimum length of the sectors. It has been theoretically found that use of such sectors reduces the rotor
unbalanced response, increases the stability limit speed for simple rotor–shaft systems and thus improves
the dynamic characteristics. Parameters of the system have been presented in terms of non-dimensional
quantities. Many examples have been presented in support of the conclusion. The life of such supports,
particularly in the presence of chemicals and other reagents has not been investigated.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Rotating machinery primarily comprise of shaft, discs representing gears or blades depending
upon the use and bearings to support the load as well as to help in rotation. Rotary power is fed to
the rotor from motor or any prime mover for rotation. Ideally, the rotor should only execute
rotation but due to several excitations either external or internal by nature, rotating machinery
suffer generally from two operational difficulties from dynamic point of view. These difficulties
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are (a) high amplitude of vibration due to resonance and (b) self-excited vibration of the system
also termed as the loss of stability. Important causes for external excitations are unbalance in the
rotor or in the shaft, misalignment in the coupling, lack of straightness of the shaft out of many
others. Internal excitation or self-excitation is caused when the characteristic of the system
becomes such that the rotary power magnifies and supports any little perturbation to the system.
Both these forms of excitations and the resulting outcome are unwanted from the points of view of
operational ease, integrity safety and reliability. Hence, many attempts have been taken so far to
reduce these effects and are reported in the literature. By and large all these attempts were to
provide damping at the support as this has been observed to cure the above difficulties by
dissipating the unwanted vibratory energy. Refs. [1,2] out of many others reported the
improvement of overall dynamic characteristics calculated in terms of synchronous response
amplitude of the rotor due to unbalance and the stability limit speed of the rotor–shaft system
when supports were added. Existence of support properties corresponding to optimum dynamic
performance was also reported. Out of many works on predicting the optimum support properties
an interesting one is by Pilkey et al. [3], where the authors used the ‘‘linear programming
technique’’ to predict the optimum support characteristics. Damping is a mechanism to dissipate
mechanical energy in the form of heat. The quest for more efficient energy dissipating mechanism
showed that the polymeric materials were very useful. Mallik [4] reported many uses of the
polymeric supports. The handbook written by Darlow and Zorzi [5] reported many uses of these
materials for reducing the amplitude of rotor vibration. Zorzi’s experiments reported in Ref. [6]
further consolidated the use of polymeric elements as useful support material as it showed the
efficiency of polymeric support materials over the squeeze film dampers in reducing vibration
amplitude. Polymer science is a rapidly emerging area of technical excellence. A detailed record by
Corsaro and Sperling [7] shows that the chemists are now able to synthesize polymers with desired
mechanical properties. Inspired by the recent developments, Dutt and Nakra [8,9] predicted the
polymeric characteristics that can improve the dynamic characteristics of simple rotor–shaft
systems. The work presented in Ref. [9], is an example to show that frequency-dependent stiffness
and loss factor of the polymeric supports can be predicted in such a way that resonance can be
avoided by suitably changing the natural frequencies of a simple rotor–shaft system. Recently,
Panda and Dutt [10] reported an optimization technique to predict optimum feasible support
characteristics to minimize the unbalanced response (UBR) and maximize the stability limit speed
(SLS). The Ph.D. dissertation of Dutt [11] may be seen for details of calculations of UBR and SLS
of rotor–shaft system on polymeric supports. In all the references cited above the authors
concentrated more on the characteristics of the supports but did not report the true geometrical
design of such supports, the relationship, the support properties bear with the dimension, and the
placement of supports. These were truly attempted here.

2. Analysis

2.1. Properties of a polymeric element

The elastic modulus E and the modulus of rigidity G represent the properties of any material.
These are independent of the dimension of any material. In the case of polymers also the same is
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true. The only difference is that unlike metals, where E and G are constants, these are functions of
operators of time in the case of polymers. Therefore, the value of E or G is dependent on the
nature of loading for polymers. Let us take the example of a polymeric bar of length l; width w
and thickness t as shown in Fig. 1(a). Load displacement characteristics of polymeric elements can
be represented using multi-element spring damper model. Figs. 1(b) and (c) show the 3- and 4-
element models respectively. For the 3-element model ‘‘K1’’ may be called the primary support
stiffness, K2; the secondary support stiffness and C1; the support damping coefficient. Other more
complicated multi-element models can also be used. Force displacement relationships obtained by
using 3- and 4-element models are given below. Detailed process for finding the relationships can
be found in Bland [12]. Here in this work the 3-element model has been used, firstly due to its
simplicity and secondly for getting an easy insight into the effect that each support parameter has
on the dynamic response of the rotor–shaft system.

F ¼ Kð Þd: ð1Þ

In the above expression F is the force, Kð Þ; represents the stiffness operator and d is the
displacement.
For the 3-element model

Kð Þ ¼
g1 þ g2D
1þ a1D

; ð2Þ

where g1 ¼ K1; g2 ¼ K1C1=K2 þ C1; a1 ¼ C1=K2:

Fig. 1. (a) The polymeric bar; (b) 3-element model and (c) 4-element model.
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For the 4-element model

Kð Þ ¼
g1 þ g2D þ g3D

2

1þ a1D
; ð3Þ

where g1 ¼ K1; g2 ¼ C1 þ C2 þ K1C2=K2; g3 ¼ C1C2=K2:
The symbol ‘‘D’’ represents d=dt: Using the expression of the stiffness operator, the expression

of the elastic modulus can be obtained as given below in Eq. (4).

Eð Þ ¼
l

wt
Kð Þ ð4Þ

Relationship between E and G for polymers is given by

Gð Þ ¼
Eð Þ

2ð1þ mÞ
ð5Þ

In Eq. (4) m is the Poisson’s ratio. The value of m is close to 0.5 for rubber like materials. For
metals this is a constant but in the case of polymers this varies depending upon conditions of
loading displacement and may be upon composition.

2.2. The support system

Fig. 2(a) shows the support system. Polymeric sectors, each of same material, are inserted in
the annular space between the outer race of the bearing and the bearing housing and are
considered glued on both the housing and the inner race. It has been assumed that the force of
compression together with the effect of gluing is sufficient to prevent the outer race from rotating.
Any general movement of the outer race of the bearing loads the sector with a dual effect of
compression and shear. The net effect may, depending upon the location of the sector, increase or
decrease the initial compressive force. Fig. 2(b) shows the effect of a vertical movement of the
outer race.

2.2.1. Stiffness operator of the general support system

Fig. 3 shows the support system with many polymeric inserts. Suppose that the number of
sectors is ‘‘n’’. Radius of the outer race is r and the thickness of the polymeric sector is t:
Material of all the inserts is assumed to be same. The principle of linear viscoelastic solid has
been considered for modeling the sectors. We consider here the ith sector, i.e., the sector
between the angles y1i and y2i: Fig. 4 shows this sector. We suppose that the outer race has a
movement of dx along the X direction and dy along the Y direction. Considering an infinitesimal
trapezoidal polymeric element shown cross-hatched, of length dj at an angular location j; the
displacements along radial and cross-radial directions, i.e., along r and j directions will,
respectively, be

dr ¼ dx cosjþ dy sin j; ð6Þ

dj ¼ �dx sin jþ dy cosj: ð7Þ

The deformation dr being in the radial direction will cause compression and dj being along the
cross-radial direction will cause shear. It may be noticed from the expressions that the

J.K. Dutt, T. Toi / Journal of Sound and Vibration 262 (2003) 769–793772



Fig. 2. (a) The support system; and (b) Movement of the outer race by d:

Fig. 3. The support system with eight symmetric sectors.
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deformations vary as the location of the section varies. Let us consider the thin slice subjected to
these deformations. Fig. 5 shows the enlarged infinitesimal element. Area of the face of a
strip, of thickness dt1; at a depth t1 from the top is given by r þ t1ð Þ=r

� �
dA; where dA ¼ ðrwÞ dj is

the area of the top surface. Total deflection under the influence of a compressive force dðFcÞ
is given by

Dc ¼
Z
0

dðFcÞ � dt1

r þ t1ð Þ=r
� �

ðrwÞEð Þ dj
¼

dðFcÞr
ðrwÞ djEð Þ

ln
r þ t

r

��� ���: ð8Þ

In the above expression the subscript ‘‘c’’ indicates the case for compressive deformation.
The infinitesimal force can be expressed as

dðFcÞ ¼
wEð ÞDcðdjÞ

ln
r þ t

r

��� ��� : ð9Þ

Writing Dc ¼ dr ¼ dx cosjþ dy sin j; we get

dðFcÞ ¼
wEð Þðdx cosjþ dy sin jÞðdjÞ

ln r þ tð Þ=r
�� �� : ð10Þ

Fig. 4. Displacement of polymeric element under combined loads.

Fig. 5. The element in compression.
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The cosine component of this force works along the X direction and the sine component works in
the Y direction. Writing the infinitesimal forces along X and Y directions as dðFcxiÞ and dðFcyiÞ;
respectively, and integrating from j ¼ y1i to j ¼ y2i the expressions of the forces due to
compression, Fcxi acting in the X direction and Fcyi acting in the Y direction are obtained as given
in Eqs. (11) and (12):

Fcxi ¼
Z y2i

y1i
dFcxi

¼
wEð Þ

ln r þ tð Þ=r
�� �� dx

y2i � y1i
2

þ
sin 2y2i � sin 2y1i

4

� �
þ dy

cos 2y1i � cos 2y2i
4

� �	 

; ð11Þ

Fcxi ¼
Z y2i

y1i
dFcyi

¼
wEð Þ

ln r þ tð Þ=r
�� �� dx

cos 2y1i � cos 2y2i
4

� �
þ dy

y2i � y1i
2

�
sin 2y2i � sin 2y1i

4

� �	 

: ð12Þ

Considering the same element in Fig. 5, shown again in Fig. 6, where it is subjected to shear
deformation Ds ¼ dj ¼ �dx sin jþ dy cosj; (subscript s for shear deformation), and following
the same procedure as in the case of finding the compressive deformation, infinitesimal force for
shear deformation ‘‘dFs’’ is obtained and given below in Eq. (13):

dðFsÞ ¼
wGð ÞDsðdjÞ
ln r þ tð Þ=r
�� �� : ð13Þ

The cosine component of this force acts in the Y direction and the sine component acts in the
negative X direction. Integrating all the infinitesimal forces along X and Y directions the
expressions of net shear deformation force due to the ith element ‘‘Fsxi’’ and ‘‘Fsyi’’ are obtained as
given in Eqs. (14) and (15):

Fsxi ¼
Z y2i

y1i
dFsxi

¼
wGð Þ

ln r þ tð Þ=r
�� �� dx

y2i � y1i
2

�
sin 2y2i � sin 2y1i

4

� �
� dy

cos 2y1i � cos 2y2i
4

� �	 

: ð14Þ

Fig. 6. The element in shear.
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Fsyi ¼
Z y2i

y1i
dFsyi

¼
wGð Þ

ln r þ tð Þ=r
�� �� dx

cos 2y2i � cos 2y1i
4

� �
þ dy

y2i � y1i
2

þ
sin 2y2i � sin 2y1i

4

� �	 

: ð15Þ

Expressions of total forces ‘‘Fi
x’’ and ‘‘F

i
y’’ acting along X and Y directions can be obtained by

adding the expressions given by Eqs. (11) and (14) and those given by the Eqs. (12) and (15),
respectively. Using the expressions of Eð Þ and Gð Þ given in Eqs. (4) and (5), the expression of
length of the polymeric sector l ¼ ðr þ 0:5tÞ* ðy2i � y1iÞ and putting the non-dimensional term
mp ¼ t=r expressions of Fi

x and Fi
y are obtained as given in Eqs. (16) and (17):

Fi
x ¼ Fcxi þ Fsxi ¼ ki

xxð Þdx þ ki
xyð Þdy; ð16Þ

Fi
y ¼ Fcyi þ Fsyi ¼ ki

yxð Þdx þ ki
yyð Þdy; ð17Þ

where

ki
xxð Þ ¼ ki

1Kð Þ; ki
xyð Þ ¼ ki

yxð Þ ¼ ki
2Kð Þ and ki

yyð Þ ¼ ki
3Kð Þ; ð18Þ

ki
1 ¼

ð2þ mpÞðy2i � y1iÞ
16ð1þ mÞmp lnð1þ mpÞ

ð6þ 4mÞðy2i � y1iÞ þ ð1þ 2mÞðsin 2y2i � sin 2y1iÞ½ �; ð19Þ

ki
2 ¼

ð2þ mpÞðy2i � y1iÞ
16ð1þ mÞmp lnð1þ mpÞ

ð1þ 2mÞðcos 2y1i � cos 2y2iÞ½ �; ð20Þ

ki
3 ¼

ð2þ mpÞðy2i � y1iÞ
16ð1þ mÞmp lnð1þ mpÞ

ð6þ 4mÞðy2i � y1iÞ � ð1þ 2mÞðsin 2y2i � sin 2y1iÞ½ �; ð21Þ

where ki
1; ki

2; ki
3 are dimensionless constants for the ith polymeric sector.

Summing all the forces along X and Y directions for all the sectors the expressions of Fx and Fy

are obtained as given in Eqs. (22) and (23):

Fx ¼
Xn

1

Fi
x ¼

Xn

1

ki
xxð Þdx þ

Xn

1

ki
xyð Þdy ¼ Kc

1Kð Þdx þ Kc
2Kð Þdy; ð22Þ

Fy ¼
Xn

1

Fi
y ¼

Xn

1

ki
yxð Þdy þ

Xn

1

ki
yyð Þdy ¼ Kc

2Kð Þdx þ Kc
3Kð Þdy; ð23Þ

Kc
1 ¼

Xn

1

ki
1; Kc

2 ¼
Xn

1

ki
2; Kc

3 ¼
Xn

1

ki
3:
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Value of the constants Kc
1 ; Kc

2 and Kc
3 depends upon the geometry and placement and not upon

the material of the sectors. From Eqs. (16) and (17) as well as from Eqs. (22) and (23) it may be
seen that, in general, the forces are coupled, i.e., a displacement in the X direction generates a
force in the Y direction and vice versa. When subjected to sinusoidal excitation causing sinusoidal
displacement functions, the stiffness operators give rise to complex expressions of the stiffness
where the real part is the stiffness, in-phase with the force, and the imaginary part is due stiffness
in-quadrature with the force. Considering the stiffness operator given in Eq. (2) for the 3-element
model to operate on a sinusoidal displacement function of frequency o; it is possible to express the
stiffness in the complex form

Krealð1þ iZÞ: ð24Þ

In Eq. (24) Kreal ; the in-phase stiffness and Z; the loss factor are given as

Kreal ¼
g1 þ o2a1g2
1þ o2a21

� �
; Z ¼

og2 � oa1g1
g1 þ o2a1g2

� �
: ð25Þ

Expressions of Kreal and Z change with the model that represents the support.

2.3. Unbalanced response

2.3.1. Assumptions
Fig. 7 shows the schematic diagram of the rotor–shaft system. The rotor of massM2 is placed in

the middle of the mass less rotor–shaft with stiffness Ks at the location of the disc and having
viscous internal damping the coefficient of which is ‘‘ci’’. The shaft is mounted on identical
bearings of stiffness Kb=2 each and negligible damping coefficient. It is considered that the
restoring force due to the bearing varies linearly with the deformation of the bearing elements.
Rolling element bearings have been considered in this work. Though in reality rolling element
bearings offer restoring force varying nonlinearly with deformation of the elements, yet, the effect
of non-linearity in such cases is not much pronounced particularly in the presence of external
damping due to the polymeric damping materials in this case. Refs. [11,13] may be seen for the
effect of non-linear restoring force. Bearings on both sides are supported on identical supports,
i.e., the number, material and position of polymer sectors on two sides are identical. Total mass of
the bearings is M1: The rotor has an unbalance, the radius of unbalance being eu: The unbalance
creates a rotating force of magnitude equal to the centrifugal force due to the unbalanced mass.

Fig. 7. The rotor–shaft system.
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2.3.2. Equations of motion

Following Ref. [2] the equations of motion are written below:

M2 .x2 þ ci ’xs þ Ksxs þ cioys ¼ M2euo2 cosot; ð26Þ

Kbxjo � ci ’xs � Ksxs � ociys ¼ 0; ð27Þ

M1 .x1 þ 2Kc
1Kð Þx1 þ 2Kc

2Kð Þy1 � Kbxjo ¼ 0; ð28Þ

M2 .y2 þ ci ’ys þ Ksys � cioxs ¼ M2euo2 sinot; ð29Þ

Kbyjo � ci ’ys � Ksys þ ocixs ¼ 0; ð30Þ

M1 .y1 þ 2Kc
2Kð Þx1 þ 2Kc

3Kð Þy1 � Kbyjo ¼ 0; ð31Þ

where ‘‘xm’’ and ‘‘ym’’ are the generic displacements for m ¼ 1; 2; jo; s where the suffixes ‘‘1’’ and
‘‘2’’ stand for the absolute displacement of the bearing mass and rotor mass, respectively, suffix
‘‘jo’’ denotes the net deformation of the bearing element and the suffix ‘‘s’’ denotes the
displacement of rotor mass with respect to the ends, i.e., xs ¼ x2 � xj � x1 and ys ¼ y2 � yj � y1:

2.3.3. Response calculation

Synchronous steady state response has been found out in this section. Substituting in the
equations from (25) to (30) xm ¼ Xme

iot and ym ¼ Yme
iot; for m ¼ 1; 2; jo; where i ¼

ffiffiffiffiffiffiffi
�1

p
; Xm and

Ym are complex numbers, using the non-dimensional terms

a ¼ M1=M2; bb ¼ Kb=Ks; b1 ¼ K1=Ks; b2 ¼ K2=Ks; x1 ¼ C1=cc; cc ¼ 2M2on;

d ¼
o
on

; on ¼

ffiffiffiffiffiffiffi
Ks

M2

r
; bsp1 ¼

Kc
1Kreal

Ks

; bsp2 ¼
Kc
2Kreal

Ks

; bsp3 ¼
Kc
3Kreal

Ks

;

Kreal

Ks

¼
b1b

2
2 þ 4ðb1 þ b2Þx

2
1d
2

b22 þ 4x
2
1d
2

( )
; Z ¼

2b22x1d

fb1b
2
2 þ 4ðb1 þ b2Þx

2
1d
2g

and solving the resulting simultaneous equations Xm and Ym can be found out.

xm ¼ realðXme
iotÞ; ym ¼ imaginaryðYme

iotÞ: ð32Þ

The vector form of displacement can be obtained by writing the displacements in the form of

zm ¼ xm þ iym: ð33Þ

Non-dimensional unbalanced response amplitude is found out by dividing zmj j for m ¼ 1; 2; jo
by eu: Non-dimensional steady state response amplitude of the rotor is given by the
expression

UBR ¼ max z2j jð Þ=eu: ð34Þ
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2.3.4. Special case of no cross-coupling

If corresponding to any arrangement of the sectors the value of Kc
2 ¼ 0 and Kc

1 ¼ Kc
3 ¼ Ksp

then, for that arrangement of the polymeric sectors, forces in the X and Y directions will be
uncoupled. For such cases Eqs. (25)–(30) can be assembled and reduced to only 3 equations by
putting zm ¼ xm þ iym and written below for m ¼ 1; 2; jo: The equations can be found in Ref. [14]:

M2 .z2 þ ci ’zs þ ðKs � iociÞzs ¼ M2euo2eiot; ð35Þ

Kbzjo � cizs � ðKs � iociÞzs ¼ 0; ð36Þ

M1 .z1 þ 2 Ksp

� �
z1 � Kbzjo ¼ 0: ð37Þ

In Eq. (36), /KspS is the support stiffness operator and is equal to KsupKð Þ Ksup is a factor
consisting of the geometrical parameters of the sectors.
Following the above solution process, putting bsp1 ¼ bsp3 ¼ bsp; bsp2 ¼ 0 and using the other

non-dimensional terms Eqs. (34)–(36) can be reduced to the following form:

ð1� d2Þ �1 �1

1 �ð1þ bbÞ �1

0 bb fad2 � 2bspð1þ iZÞg

2
64

3
75

Z2

Zjo

Z1

8><
>:

9>=
>; ¼

eud
2

0

0

8><
>:

9>=
>;: ð38Þ

From Eq. (37) non-dimensional unbalance response amplitude Zm=eu can be found out for m ¼
1; 2; jo and given below:

Z2

eu

¼
½�fad2 � 2bspð1þ iZÞgð1þ bbÞ þ bb�d

2

fad2 � 2bspð1þ iZÞgfd
2ð1þ bbÞ � bbg � bbd

2
; ð39Þ

Zjo

eu

¼
½ad2 � 2bspð1þ iZÞ�d

2

fad2 � 2bspð1þ iZÞgfd
2ð1þ bbÞ � bbg � bbd

2
; ð40Þ

Z1

eu

¼
bbd

2

fad2 � 2bspð1þ iZÞgfd
2ð1þ bbÞ � bbg � bbd

2
: ð41Þ

Non-dimensional unbalanced response amplitude of the rotor is

UBR ¼ Z2j j=eu: ð42Þ

The undamped natural frequencies can be found out from Eq. (38) by putting Z ¼ 0 and equating
the determinant of the system matrix to 0. The system in this case has two degrees of freedom and
has two natural frequencies denoted by two non-dimensional quantities d1 and d2 which change
with the frequency of excitation.
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2.4. Stability limit speed

The SLS or the stability threshold of the system can be calculated by using Routh’s criterion as
was done by Dutt and Nakra [8]. Detailed process has not been given here for making this paper
brief. Substituting z2 ¼ Z2e

ilt; zj ¼ Zje
ilt; z1 ¼ Z1e

ilt in the equations of motion for free

vibration and putting R ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks=M2

p
the characteristic equation can be written.

3. Results and discussion

In the support system comprising of sectors the material of each has been considered same.
Presented under this section are the results and discussions concerning three topics, (1) support
characteristics for different placement of sectors, (2) unbalanced response amplitude and effect of
supports and (3) parametric analysis to obtain optimum parameters for support sectors. Non-
dimensional parametric values of the system studied are chosen as a ¼ 0:4; bb ¼ 2:0; b1 ¼ 0:01;
b2 ¼ 0:5; x1 ¼ 0:1; m ¼ 0:5; mp ¼ 0:5:

3.1. Support characteristics

From the expression of Kreal and Z; it may be seen that these quantities change with the
frequency of excitation. Whereas Kreal monotonically increases with the excitation frequency, Z
may increase or decrease. The property of the support system with polymer sectors is also in
general frequency dependent. It will be interesting to see the frequency-dependent characteristics
of a few support systems to start with. The sectors are called symmetrically placed, when all the
sectors are of same length, i.e., each sector subtends same angle at the bearing centre and are
equidistant along the circumference, otherwise the placement is non-symmetrical. Figs. 8(a) and
(b) show the sector arc length (in terms of angle subtended by a sector at the bearing centre)
placement and the corresponding characteristics of the support system comprising four non-
symmetrically placed sectors respectively. Fig. 8(b) shows that bsp2; the non-dimensional cross-
coupled stiffness is negative. Therefore, there may exist the possibility of instability. Fig. 9(a)
shows a support system consisting of four symmetrically placed sectors each subtending an angle
of 18� at the bearing centre. Corresponding characteristics in Fig. 9(b) show no cross-coupling.
Moreover the stiffness in X and Y directions are same. Similar effect is noticed from Figs. 10(a)
and (b), where eight symmetrically placed sectors (each subtending 10� at the bearing centre) were
chosen. It may be concluded that sectors having arbitrary length and placed arbitrarily that is
without any visible symmetry, give rise to cross coupled stiffness which may be unwanted when
they become negative. Forces in X and Y co-ordinates are not coupled if sectors are of same
length and placed symmetrically. In the subsequent studies, therefore, sectors of equal arc length,
i.e., sectors subtending equal angle at the bearing centre have been considered.

3.2. Unbalanced response amplitude and effect of supports

Unbalanced response has been studied and reported here to visualize the mechanism of
obtaining the optimum dimension of the polymeric supports for providing optimum damping at
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the supports and achieving global minimum of the unbalanced rotor response amplitude for any
particular support material.
In this study 4 sectors, each subtending same angle at the bearing centre, have been considered

to be placed 90� apart and symmetrically with respect to the X and Y axes. The arrangement is

Fig. 8. (a) Support system with four unsymmetric sectors and (b) the characteristics.
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shown in Fig. 9(a). The angles subtended by each sector at the bearing centre have been selected as
8�, 12�, 18�, 40� in the Figs. 11–14, respectively. Figs. 11(a)–14(a) show the plot of UBR, d1 and
d2 with varying non-dimensional rotational frequency d: Figs. 11(b)–14(b) show the real part vs.
imaginary part of the non-dimensional rotor response Z2=eu: These plots are also called Nyquist

Fig. 9. (a) Support system with four symmetric sectors and (b) the characteristics.
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plots [15]. Figs. 11(a) to 14(a) show that d1 and d2 monotonically increase with d: This happens
because stiffness of the polymeric sectors increase with increasing frequency of excitation.
Whenever any natural frequency of the system is intercepted by the sweeping frequency of
excitation, resonance occurs and the corresponding peaks are expected to occur in the close
vicinity of the point of interception. The points of interception are shown in the figures as the
points of intersection of the 45� line with the plots of d1 and d2: In Figs. 11(a) and 12(a) each, two

Fig. 10. (a) Support system with eight symmetric sectors and (b) the characteristics.
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peaks (corresponding to two degrees of freedom), occur in the close vicinity of the corresponding
point of intersection but in Figs. 13(a) and 14(a) each, only one peak shows up instead of two. In
Fig. 14(a) the only peak is not in the neighborhood of either point of intersection. This can also be
verified by looking at Figs. 11(b)–14(b). Whereas in Fig. 11(b), the plot completes two loops,
signifying the existence of two peaks, in the latter ones, encirclement in the middle has been
reduced to kinks, a deep kink in Fig. 12(b) and light kinks each in Figs. 13(b) and 14(b),

Fig. 11. (a) Rotor response with 8� sectors and (b) real versus imaginary plot for 8� sectors.
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respectively. These plots differ from the nature of the Nyquist’s plot given in Ref. [15], for any
two-degree-of-freedom system with constant stiffness, in the sense that, both the loops are not
physically complete. This is principally due to the dependence of stiffness and loss factor on the
frequency of excitation. Thinking heuristically, the reduction in the number of encirclement by
one, is, as if, equivalent to losing one degree of freedom. This behavior is primarily due to the
effect of high damping, which masks one of the peaks. Steady global reduction of UBR is
observed as the angle is increased from 8–18� degrees but further increment of the angle proves

Fig. 12. (a) Rotor response with 12� sectors and (b) real versus imaginary plot for 12� sectors.
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deleterious. Therefore with the present parametric values of the system, a length of the sector
subtending 18� at the bearing centre is optimum. Different optimum values are obtained with
different set of parametric values.

Examination of the figures may infer that the arc length of the sector should be increased up to the

point when the real versus imaginary plot (Nyquist Plot) of the rotor response apparently ceases to
show as many encirclements as the degrees of freedom. This is an important observation and may also
serve as a quick useful indicator to reaching optimality.

Fig. 13. (a) Rotor response with 18� sectors and (b) real versus imaginary plot for 18� sectors.
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Optimum values of other support parameters have been found out using parametric analysis
reported in the next section.

3.3. Parametric analysis

Parametric analysis of the UBR has been done to find out optimum geometric parameters of
the sectors (angle y subtended by a sector and thickness ratio mp) and to assess the effect of other
support parameters (a;b1; b2; x1). For this analysis the value of one parameter, chosen at a time,

Fig. 14. (a) Rotor response with 40� sectors and (b) real versus imaginary plot for 40� sectors.
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has been varied with the values of others kept constant at the respective chosen values. Chosen
constant values for the system under study are given above under Section 3.1. In each of the
figures from 15–19 the ‘‘global peak unbalanced frequency response amplitude of the rotor’’
(GPUBR) has been plotted with varying value of the chosen parameter.
Fig. 15 shows the variation of GPUBR with the angle subtended by each sector. This shows

that the minimum response amplitude is achieved with y ¼ 18
�
for the chosen set of parameters of

the system. The mechanism of obtaining the optimum value was shown in Figs. 11–14. Therefore
polymeric material sectors of optimum arc length, rather than a full annular length, are more
useful for reducing global peak rotor response amplitude.
Fig. 16 shows the variation of the GPUBR with the non-dimensional thickness parameter mp: It

is observed that mp has an optimum value of 0.48 corresponding minimum rotor response. So the
often-apparent idea that ‘‘the thicker the polymeric layer the minimum becomes the response’’ is
not true. There exists an optimum thickness of the layer depending upon the parametric values of
the system. The same value could be obtained by following the Nyquist plot drawn in Section 3.2.
Fig. 17 shows the variation of GPUBR with support mass ratio a: It is seen that there exists an

optimum value of a corresponding to minimum response amplitude.
Fig. 18 shows the variation of GPUBR with varying values of b1 and b2; the primary and

secondary support stiffness ratios respectively. Like before it may be found that there exist
optimum values of the parameters corresponding to minimum response amplitude. Considering
the 3-element model given in Fig. 1(b) it may be noticed that the ease of deflection of the support
and the accompanying dissipation of vibratory energy depends upon the magnitude of K1 or the
value of b1 in non-dimensional form. Very high value of b1 results in low deformation of the
support and hence GPUBR increases. Examination of Eqs. (24) and (25) shows that the value of
damping force offered by the 3-element model is obtained by multiplying the expressions of Kreal

Fig. 15. Variation of global peak unbalanced response amplitude with angle subtended by a sector.
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and Z given by Eq. (25). Contrary to the apparent feeling, it may be noticed that the damping
force increases as K2 (or b2 in non-dimensional form) increases and C1 (or x1 in non-dimensional
form) decreases. This happens because the support stiffness and damping elements K2 and C1 are
connected in series. A high damping polymer, very much suitable for containing vibration level,
can, therefore, be obtained with high values of K2 for the 3-element model. Fig. 18 shows that any
value of b2 > 0:4 is approximately suitable but b2 ¼ 0:5 corresponds to minimum response
amplitude.

Fig. 16. Variation of global peak unbalanced response amplitude with the thickness of the sector.

Fig. 17. Variation of global peak unbalanced response amplitude with the thickness of the support mass ratio.
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Fig. 19 shows the variation of GPUBR for varying values of x1: It is noticed that there exists an
optimum value of x1 ¼ 0:1 for minimum value of GPUBR. As the value of x1 increases beyond
the optimum, the support approaches towards a rigid one, lending it more difficult to be deformed
and failing to dissipate the energy of vibration more and more as a result.
Fig. 20 shows the non-dimensional SLS of the rotor–shaft system for different arc length of the

sectors and different thickness ratios. It may be seen that any combination of arc length and the

Fig. 19. Variation of global peak unbalanced response amplitude with support damping ratio.

Fig. 18. Variation of global peak unbalanced response amplitude with primary and secondary support stiffness ratios.
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thickness of the sector do not give high SLS. Moreover it may be noticed that there exists
optimum value of the arc length for which the SLS is very broad. For the system parameters
chosen in this paper four symmetric sectors placed 90� apart and each having y ¼ 18� and
mp ¼ 0:5 will give a very high SLS. The graph marked with ‘‘k ¼ 1’’ shows the one obtained by
considering the multiplying factor Ksup ¼ 1 corresponding to the case when the geometrical effects
are not considered. The SLS is constant. It may be noticed that, for a particular material, very low
UBR and very high SLS are possible to get with proper dimensional design of the polymeric
sectors.

Fig. 20. Non-dimensional SLS for different length of sectors.

Fig. 21. Comparison of unbalanced response amplitude between rotor–shaft system with and without supports.
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3.4. Comparison

UBR has been plotted in Fig. 21 for two cases:
(1) where the rotor–shaft is mounted on only bearings at the ends (marked as ‘‘Without

supports’’) and
(2) where the same system is mounted on bearings at the ends supported on optimum polymeric

support system comprising of four symmetrically placed sectors, y ¼ 18 degree and mp ¼ 0:5 for
each. The same non-dimensional system parameters given above have been used. This clearly
shows that the optimum supports give much less UBR and are therefore superior to the situation
of having no supports.

4. Conclusions

1. Polymeric sectors, not full annular polymeric inserts serve as very efficient rotor supports.
2. High value of K2 in the 3-element model signifies polymers with high damping capacity, very

much useful for vibration control.
4. Symmetrically placed sectors rather than unequal and non-symmetrically placed ones are

useful as the latter give rise to cross-coupled stiffness, which, if negative, can give rise to the
problem of instability.
5. For the set of parameters taken in this problem, a support system consisting of 4 sectors

placed 90� apart, each subtending an angle of 18� at the bearing centre and having thickness
approximately 1

2
of the bearing outer race give minimum unbalanced response amplitude. The

same sectors will give quite high SLS. Here the angle y may be varied by �2� and mp by �0.04 for
approximately obtaining the minimum unbalanced response and maximum SLS.
6. In this work polymeric supports were chosen but other than polymeric supports capable of

generating same characteristics will also reduce the vibration response equally.
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